Quantitative transfer of a methyl group from a methyl(hydrido)iridium complex to $SiRH_3$ (R = n-butyl, pentyl or hexyl) to give $SiR(Me)H_2$ and a dihydridoiridium complex

Masaaki Okazaki, Hiromi Tobita* and Hiroshi Ogino*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77, Japan

Thermal reaction of $[Ir(Me)(H)\{\eta^2-Me_2Si(CH_2)_2PPh_2\}(PMe_3)_2]$ with $SiRH_3$ (R=n-butyl, pentyl or hexyl) resulted in silicon–carbon bond formation to give $SiR(Me)H_2$ and $[IrH_2\{\eta^2-Me_2Si(CH_2)_2PPh_2\}(PMe_3)_2]$. Isolation of $Si(n-C_6H_{13})MeH_2$ was achieved by preparative gas chromatography.

Stoichiometric conversion of alkyl(hydrido) complexes into functionalised organic compounds can be an important preliminary to development of the transition-metal-catalysed alkane functionalisation reactions. Only a very limited number of such conversions have been reported. In 1983, Janowicz and Bergman found that treatment of [IrR(H)(η -C₅Me₅)(PMe₃)] with bromoform followed by HgCl₂ led to the formation of [IrBr(Cl)(η -C₅Me₅)(PMe₃)] and HgR(Cl), and the latter gave RBr by adding bromine. Baker and Field reported that [Fe(C₅H₁₁)H(dmpe)₂] (dmpe = Me₂PCH₂CH₂PMe₂) was transformed to 1-bromopentane by direct treatment with bromine. We report here a new reaction in which the methyl group of [IrMe(H){ η ^2-Me₂Si(CH₂)₂PPh₂}(PMe₃)₂]⁴ is stoichiometrically transferred to SiRH₃ (R = n-butyl, pentyl or hexyl) to give SiR(Me)H₂ and [IrH₂{ η ^2-Me₂Si(CH₂)₂PPh₂}(PMe₃)₂].

Results and Discussion

Treatment of $[IrMe(H){\eta^2-Me_2Si(CH_2)_2PPh_2}(PMe_3)_2]$ **1** with 1 equivalent of $SiRH_3$ (R = n-butyl, pentyl or hexyl) in C_6D_6 at 45 °C led to the almost exclusive formation of [IrH₂{η²-Me₂Si- $(CH_2)_2PPh_2$ $(PMe_3)_2$] 2 and $SiR(Me)H_2$ within 1 h (Scheme 1). After removal of volatiles, recrystallisation from toluene-hexane afforded colourless crystals of 2 in 71% isolated yield. Complex 2 was independently synthesized by the reaction of [IrCl(H)- $\{\eta^2\text{-Me}_2\text{Si}(CH_2)_2\text{PPh}_2\}(PMe_3)_2$ with LiAlH₄ in tetrahydrofuran (thf). The IrH signals appear in the ¹H NMR spectrum as two doublets of triplets at δ -11.70 [J(HP_{trans}) = 114.0, $J(HP_{cis}) = 16.5$] and -12.62 [$J(HP_{trans}) = 108.0$, $J(HP_{cis}) = 21.0$ Hz] split by P–H couplings. The ³¹P-{¹H} NMR spectrum exhibits signals of three inequivalent mutually coupled phosphorus atoms with nearly identical cis P-P coupling constants, which establishes that 2 possesses three phosphorus atoms in a fac relationship. The IR, mass spectral and analytical data are also consistent with the composition shown in Scheme 1. Isolation of Si(n-C₆H₁₃)MeH₂ in 52% yield was carried out by preparative gas chromatography. Characterisation of all the compounds of type SiR(Me)H₂ was based on comparison of the NMR spectra with the authentic samples synthesized by LiAlH₄ reduction of SiR(Me)Cl₂. Only recently, Aizenberg and Milstein⁵ reported that when [IrMe(H)(SiEt₃)(PMe₃)₃] was heated to 100 °C not only C-H but also Si-C reductive elimination occurred to give CH4 and SiMeEt3. The ratio of CH4 to SiMeEt₃ was about 4:1. Our reaction in Scheme 1 is the first clean transformation of an alkyl(hydrido) complex into a silicon-containing organic product. Transition-metal-mediated Si-C bond formation reactions have attracted increasing attention in relation to the catalytic transformation of hydrosilane.⁶

A conventional mechanism for the reaction in Scheme 1 involving oxidative addition/reductive elimination can be con-

Si P = Me₂Si(CH₂)₂PPh₂

$$\begin{array}{c}
H \\
H \\
PMe_3 \\
1
\end{array}$$
+ SiR(Me)H₂

$$\begin{array}{c}
F \\
P \\
PMe_3
\end{array}$$

Scheme 1 R = n-butyl, pentyl or hexyl. (i) C₆D₆, 1 h, 45 °C

$$\begin{array}{c|c}
1 & \xrightarrow{(i)} & \begin{bmatrix}
Si & H & Me \\
P & H & SiRH_2 \\
PMe_3
\end{bmatrix} & \xrightarrow{(ii)} & 2
\end{array}$$

Scheme 2 R = n-butyl, pentyl or hexyl. (i) $+SiRH_3$, $-PMe_3$; (ii) $+PMe_3$, $-SiR(Me)H_2$

sidered, as shown in Scheme 2. According to Scheme 2, carbon-silicon reductive elimination has to occur preferentially over carbon- or hydrogen-hydrogen reductive elimination. This assumption is in contradiction to the usual tendency of reductive elimination, ⁷ although we cannot rule out this mechanism.

An alternative mechanism is illustrated in Scheme 3. This involves the initial generation of a seven-co-ordinate iridium(v) intermediate $\bf A$ by dissociation of a PMe₃ ligand and subsequent Si–H oxidative addition. Similar seven-co-ordinate trihydridobis(siyl)-iridium(v)⁸ and -rhodium(v)⁹ complexes have been reported recently. The intermediate $\bf A$ eliminates dihydrogen to give a methylsilylene intermediate $\bf B$.¹⁰ Intermediate $\bf B$ undergoes a 1,2 shift of the Me ligand to the silylene silicon atom to give a hydrido(methylsilyl)iridium(III) complex $\bf C$.¹¹ Berry *et al*.¹² reported facile migration of a silyl ligand from tantalum to an alkylidene at -10 °C. Oxidative addition of H₂ to $\bf C$ gives a seven-co-ordinate iridium(v) species $\bf D$, which subsequently eliminates SiR(Me)H₂ and binds a PMe₃ to give 2.

Reaction of compound 1 with $Si(n-C_5H_{11})H_3$ in the presence of PMe₃ (5 equivalents) was carried out. The Si–C bond formation was completely inhibited. This means that the reaction in Scheme 1 requires the initial dissociation of a PMe₃ ligand.

We carried out the thermal reaction of compound **1** with a monohydrosilane $Si(C_6H_4Me-p)Me_2H$ from which it is impossible to generate a silylene moiety *via* dehydrogenation as illustrated in Scheme 3. In contrast to the reaction with trihydrosilanes in Scheme 1 (at 45 °C, 1 h) the reaction with $Si(C_6H_4Me-p)Me_2H$ was extremely slow at 45 °C. At 55 °C it proceeded almost quantitatively to give $[IrH\{Si(C_6H_4Me-p)-Me_2H\}]$

1
$$\underbrace{\begin{array}{c} \text{Si} \\ \text{P} \\ \text{PMe}_3 \end{array}}_{\text{Ir}} \underbrace{\begin{array}{c} \text{Ni} \\ \text{PMe}_3 \end{array}}_{\text{Iii}} \underbrace{\begin{array}{c} \text{Si} \\ \text{PMe}_3 \end{array}}_{\text{Iii}} \underbrace{\begin{array}{c} \text{Si} \\ \text{PMe}_3 \end{array}}_{\text{Iii}} \underbrace{\begin{array}{c} \text{Si} \\ \text{PMe}_3 \end{array}}_{\text{Ir}} \underbrace{\begin{array}{c} \text{PMe}_3 \end{array}}_{\text{Ir}} \underbrace{\begin{array}{c} \text{P$$

Scheme 3 R = n-butyl, pentyl or hexyl. (i) +SiRH₃, -PMe₃; (ii) -H₂; (iii) +H₂; (iv) +PMe₃

Scheme 4 (*i*) C₆D₆, 6 h, 55 °C, -MeH

 $Me_2\}\{\eta^2\text{-}Me_2Si(CH_2)_2PPh_2\}(PMe_3)_2]$ **3** within 6 h (Scheme 4). Crystallisation from toluene–hexane gave colourless crystals in 82% isolated yield. The formation of methane was confirmed by 1H NMR spectroscopy (δ 0.15 in C_6D_6). The Si–C bond formation product $Si(C_6H_4Me\text{-}p)Me_3$ and **2** were not detected spectroscopically. These results indicate that the rate-determining step of the reaction needs a condition slightly more drastic than that in Scheme 1, but even under the conditions 55 °C, 6 h Si–C reductive elimination does not occur at all. These observations favour the mechanism in Scheme 3 involving the silylene intermediate for the metal-mediated siliconcarbon bond formation reaction in Scheme 1.

We are now trying to apply this stoichiometric reaction to the transition-metal catalysed hydrosilane–alkane dehydrogenative coupling reactions.

Experimental

All manipulations were carried out under a dry nitrogen atmosphere. Reagent-grade toluene, hexane and thf were distilled from sodium–benzophenone immediately before use. [2H_6]Benzene was dried over a potassium mirror and transferred to NMR tubes under vacuum. The compounds SiRH $_3$ (R = n-C $_4$ H $_9$, C $_5$ H $_{11}$ or C $_6$ H $_{13}$), SiR(Me)H $_2$ (R = n-C $_4$ H $_9$, C $_5$ H $_{11}$ or C $_6$ H $_{13}$) and Si(C $_6$ H $_4$ Me-p)Me $_2$ H were prepared by LiAlH $_4$ reduction of the appropriate chlorosilane. Other chemicals were from Wako Pure Chemical Industries, used as received. All NMR spectra were recorded on a Bruker ARX-300 spectrometer, 1 H referenced to residual internal C $_6$ D $_5$ H at δ 7.15,

 $^{29}\mathrm{Si}$ by the distortionless enhancement of polarisation transfer (DEPT) pulse sequence, and chemical shifts were measured relative to internal tetramethylsilane. In $^{31}\mathrm{P}$ NMR spectra the chemical shifts were relative to external 85% $\mathrm{H_3PO_4}$ with downfield values reported as positive. The IR spectra were recorded on a Bruker IFS66v spectrometer.

Reaction of [IrMe(H) $\{\eta^2$ -Me₂Si(CH₂)₂PPh₂ $\}$ (PMe₃)₂] 1 with Si(n-C₆H₁₃)H₃

A Pyrex NMR tube (5 mm outside diameter) was charged with compound 1 (7.0 mg, 0.011 mmol) and $Si(n-C_6H_{13})H_3$ (1.7 µl, 0.011 mmol) and C₆D₆ (0.7 cm³) was introduced to the tube under high vacuum by the trap-to-trap transfer technique. The tube was flame-sealed. The sample was placed in an oil-bath, where it was kept at 45 °C. The reaction was monitored by ¹H, ³¹P and ²⁹Si NMR spectroscopy. After 1 h at 45 °C the clean formation of $[IrH_2\{\hat{\eta}^2-Me_2Si(CH_2)_2PPh_2\}(PMe_3)_2]$ 2 and Si-(n-C₆H₁₃)MeH₂ was confirmed spectroscopically. Isolation of 2 was carried out as follows. A Pyrex tube (10 mm outside diameter) was charged with 1 (320 mg, 0.506 mmol) and $Si(n-C_6H_{13})H_3$ (60 mg, 0.516 mmol), and benzene (0.8 cm³) was introduced under high vacuum by the trap-to-trap transfer technique. This tube was flame-sealed. The sample was placed in an oil-bath, where it was kept at 45 °C for 1 h. The tube was opened in a glove-bag, and the solution concentrated under high vacuum. Crystallisation of the residue from toluenehexane afforded colourless crystals of 2 (222 mg, 0.36 mmol, 71%) (Found: C, 43.78; H, 6.26. C₂₂H₅₂IrP₃Si·0.125C₆H₅CH₃ requires C, 43.66; H, 6.57%). The molar ratio of the complex 2 to the associated toluene was confirmed by ¹H NMR data: m/z 618 (M^+ , 10) and 616 (M-2 H, 100%); \tilde{v}_{max}/cm^{-1} (KBr) 2021, 1996 (IrH); δ_{H} (300 MHz, $C_{6}D_{6}$) 7.74–7.67, 7.56–7.50, 7.16–6.94 (10 H, m, aryl), 2.59, 1.86 (1 H × 2, m, PCH₂), 1.32 [9 H, d, J(HP) 7.4, PMe₃], 1.08 [3 H, d, J(HP) 1.5, SiMe], 1.10, 0.73 (1 H × 2, m, SiCH₂), 1.02 [9 H, d, J(HP) 8.0, PMe₃], 0.75 [3 H, d, J(HP) 4.8, SiMe], -11.70 [1 H, dt, J(HP_{trans}) 114.0, J(HP_{cis}) 16.5, IrH] and -12.62 [1 H, dt, $J(HP_{trans})$ 108.0, $J(HP_{cis})$ 21.0, IrH]; $\delta_{\rm C}(75.5 \text{ MHz}, C_6D_6)$ 141.4, 140.0, 132.7, 132.0, 128.9, 128.2, 127.8, 127.7 (aryl), 36.6 [dd, J(CP) 37.7, 11.2, PCH₂], 26.4 [dt, J(CP) 24.8, 3.5, PMe₃], 23.5 [ddd, J(CP) 28.2, 5.7, 3.5, PMe₃], 21.1 [dd, J(CP) 23.3, 6.1, SiCH₂], 14.5 [ddd, J(CP) 8.8, 6.0, 1.3, SiMe] and 7.2 [ddd, J(CP) 8.5, 3.2, 2.0, SiMe]; δ_P (121.5 Hz, C_6D_6) -62.3 [dd, $J(PP_{cis})$ 23.1, 17.0, PMe₃ (trans to IrSi)], -57.0 [dd, J(PP_{cis}) 23.1, 20.7, PMe₃ (trans to IrH)], 35.1 [dd, $J(PP_{cis})$ 17.0, 20.7, PPh_2]; $\delta_{Si}(59.6 \text{ MHz}, C_6D_6)$ 14.7 [ddd, J(SiP_{trans}) 120.8, J(SiP_{cis}) 9.6, 6.7 Hz].

Reaction of compound 1 with Si(n-C₄H₉)H₃ or Si(n-C₅H₁₁)H₃

The procedure was the same as that with $Si(n-C_6H_{13})H_3$ described above. The quantitative formation of compound ${\bf 2}$ and the corresponding methyldihydrosilanes were also confirmed spectroscopically.

Purification of $Si(n-C_6H_{13})MeH_2$ produced in the reaction of compound 1 with $Si(n-C_6H_{13})H_3$

A Pyrex tube (10 mm outside diameter) was charged with compound 1 (320 mg, 0.506 mmol) and $\mathrm{Si}(\mathit{n}\text{-}C_6\mathrm{H}_{13})\mathrm{H}_3$ (60 mg, 0.516 mmol) and benzene (0.8 cm³) introduced under high vacuum by the trap-to-trap transfer technique. The tube was flame-sealed. The sample was placed in an oil-bath, where it was kept at 45 °C for 1 h. The tube was opened in a glove-bag, and the solution passed through a short silica gel column to remove the iridium complex. The filtrate was injected into a preparative gas chromatograph to give pure $\mathrm{Si}(\mathit{n}\text{-}C_6\mathrm{H}_{13})\mathrm{MeH}_2$. Yield 34 mg (52%).

Synthesis of $[IrH_2\{\eta^2-Me_2Si(CH_2)_2PPh_2\}(PMe_3)_2]$ 2

Tetrahydrofuran (50 cm³) was added to $[IrCl(H){\eta^2}$ -

Me₂Si(CH₂)₂PPh₂}(PMe₃)₂]⁴ (0.20 g, 0.31 mmol) and LiAlH₄ (0.12 g, 3.4 mmol) at $-48\,^{\circ}$ C, and the mixture was slowly warmed to room temperature. It was stirred at room temperature for 2 h. Volatile materials were removed under reduced pressure, and the residue was extracted by toluene–hexane (2:1). The extract was filtered through an alumina column and the solvent removed from the filtrate under reduced pressure. Recrystallisation of the residue from toluene–hexane afforded [IrH₂{ η^2 -Me₂Si(CH₂)₂PPh₂}(PMe₃)₂] **2** (0.11 g, 0.18 mmol, 58% yield) as colourless crystals.

Reaction of compound 1 with $Si(\textbf{n}\text{-}C_5H_{11})H_3$ in the presence of PMe_3

A Pyrex NMR tube (5 mm outside diameter) was charged with compound 1 (10.0 mg, 0.0158 mmol), $Si(\emph{n-}C_5H_{11})H_3$ (3 mg, 0.029 mmol) and PMe $_3$ (8.2 μl , 0.079 mmol) and C_6D_6 (0.7 cm³) was introduced under high vacuum by the trap-to-trap transfer technique. The NMR tube was flame-sealed. The sample was warmed up to 45 °C in an oil-bath and kept for 1 h. No change was observed in 1H and $^{31}P\text{-}\{^1H\}$ NMR spectra.

Reaction of compound 1 with Si(C₆H₄Me-p)Me₂H

A Pyrex NMR tube was charged with compound 1 (10.0 mg, 0.0158 mmol) and Si(C₆H₄Me-p)Me₂H (2 equivalents, 5 mg) and C₆D₆ (0.7 cm³) was introduced into the tube under high vacuum by the trap-to-trap transfer technique. The NMR tube was flame-sealed. The thermal reaction was monitored by ¹H and ³¹P NMR spectroscopy (45 to 55 °C). No change was observed spectroscopically at 45 °C for 1 h. At 55 °C for 6 h the clean formation of $[IrH{Si(C_6H_4Me-p)Me_2}{\eta^2-Me_2Si(CH_2)_2}$ PPh₂}(PMe₃)₂] 3 was observed. It was isolated as follows. A Pyrex tube (10 mm outside diameter) was charged with 1 (0.25 g, 0.40 mmol) and Si(C₆H₄Me-p)Me₂ (60 mg, 0.40 mmol) and toluene (3 cm³) was introduced by the trap-to-trap transfer technique. The sample was placed in an oil-bath, where it was kept at 55 °C for 6 h. The tube was opened in a glove-box. Removal of volatiles under reduced pressure resulted in a colourless oily residue. Recrystallisation of the residue from toluene-hexane gave 3 (0.25 g, 0.33 mmol, 82% yield) as colourless crystals (Found: C, 48.61; H, 6.95. C₃₁H₅₂IrP₃Si₂ requires C, 48.60; H, 6.84%); m/z 766 (M^+ – 2) and 616 [M – $Si(C_6H_4$ -Me-p)Me₂H, 100%]; $\tilde{\nu}_{max}/cm^{-1}$ (KBr) 2031 (IrH); $\delta_{H}(300\ MHz,$ C_6D_6) 8.25-8.21, 7.66-7.57, 7.30-7.27, 7.12-6.89 (14 H, m, aryl), 2.27 (3 H, s, $C_6H_4CH_3$), 2.20, 1.95 (1 H × 2, m, PCH₂), 1.13 [3 H, d, J(HP) 1.8, SiMe], 1.10 [9 H, d, J(HP) 7.4, PMe₃], 1.06 [3 H, d, J(HP) 1.9, SiMe], 1.05, 0.70 (1 H × 2, m, SiCH₂), 0.97 [3 H, d, J(HP) 2.0, SiMe], 0.96 [9 H, d, J(HP) 7.3, PMe₃], 0.69 [3 H, d, J(HP) 2.2, SiMe] and -12.41 [1 H, dt, J(HP $_{tran}$) 101.2, J(HP $_{cis}$) 17.0, IrH]; $\delta_{\rm C}$ (75.5 MHz, $C_{\rm 6}D_{\rm 6}$) 148.3, 141.3, 136.7, 135.8, 135.7, 133.6, 132.2, 129.9, 129.1, 128.5, 128.2, 128.1 (aryl), 35.0 [dd, J(CP) 35.5, 10.4, PCH₂], 24.9 [ddd, J(CP) 24.8, 4.5, 2.6, PMe₃], 23.2 [dt, J(CP) 27.8, 4.6, PMe₃], 21.5 [dd, J(CP) 28.5, 5.4, SiCH₂], 21.4 (s, $C_{\rm 6}H_4CH_3$), 13.2 [t, J(CP) 5.0 Hz, SiMe], 12.3 [t, J(CP) 6.0, SiMe], 11.5 [ddd, J(CP) 8.9, 6.9, 3.2, SiMe] and 7.2 [dd, J(CP) 7.6, 3.5, SiMe]; $\delta_{\rm P}$ (121.5 MHz, $C_{\rm 6}D_{\rm 6}$) 27.7 [dd, J(PP $_{cis}$) 25.5, 19.4, PPh₂], -70.8 [dd, J(PP $_{cis}$) 25.5, 24.3, PMe₃ (trans to Si)] and -62.4 [dd, J(PP $_{cis}$) 19.4, 24.3, PMe₃ (trans to IrH)]; $\delta_{\rm Si}$ (59.6 MHz, $C_{\rm 6}D_{\rm 6}$) 9.7 [ddd, J(SiP $_{trans}$) 122.8, J(SiP $_{cis}$) 10.7, 7.2] and -16.1 [ddd, J(SiP $_{trans}$) 122.8, J(SiP $_{cis}$) 14.3, 10.1 Hz].

Acknowledgements

This work was supported by the Kurata Research Grant from the Kurata Foundation. We thank Shin-Etsu Chemical Co. and Toray Dow Corning Silicone Co. for the gifts of silicon compounds.

References

- 1 B. A. Arndtsen, R. G. Bergman, T. A. Mobley and T. H. Peterson, Acc. Chem. Res., 1995, 28, 154.
- 2 A. H. Janowicz and R. G. Bergman, J. Am. Chem. Soc., 1983, 105, 3929
- 3 M. V. Baker and L. D. Field, J. Am. Chem. Soc., 1987, 109, 2825.
- 4 M. Okazaki, H. Tobita and H. Ogino, *Organometallics*, 1996, **15**, 2790.
- 5 M. Aizenberg and D. Milstein, J. Am. Chem. Soc., 1995, 117, 6456.
- 6 P. Braunstein and M. Knorr, J. Organomet. Chem., 1995, 500, 21.
- 7 S. Sakaki and M. Ieki, *J. Am. Chem. Soc.*, 1993, **115**, 2373.
- 8 M. Loza, J. W. Faller and R. H. Crabtree, *Inorg. Chem.*, 1995, 34, 2937
- 9 H. Nagashima, K. Tatebe, T. Ishibashi, A. Nakaoka, J. Sakakibara and K. Itoh, *Organometallics*, 1995, **14**, 2868.
- 10 H. Handwerker, C. Leis, R. Probst, P. Bissinger, A. Grohman, P. Kiprof, E. Herdtweck, J. Blümel, N. Auner and C. Zybill, Organometallics, 1993, 12, 2162; B. P. S. Chauhan, R. J. P. Corriu, G. F. Lanneau and C. Priou, Organometallics, 1995, 14, 1657.
- 11 H. Sharma and K. H. Pannell, *Chem. Rev.*, 1995, **95**, 1351.
- 12 D. H. Berry, T. S. Koloski and P. J. Carroll, *Organometallics*, 1990, **9**, 2952.

Received 9th April 1997; Paper 7/02439H